A Level Set Analysis of the Witten Spinor with Applications to Curvature Estimates

نویسنده

  • Felix Finster
چکیده

We analyze the level sets of the norm of the Witten spinor in an asymptotically flat Riemannian spin manifold of positive scalar curvature. Level sets of small area are constructed. We prove curvature estimates which quantify that, if the total mass becomes small, the manifold becomes flat with the exception of a set of small surface area. These estimates involve either a volume bound or a spectral bound for the Dirac operator on a conformal compactification, but they are independent of the isoperimetric constant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Seiberg–witten Invariants of Manifolds with Wells of Negative Curvature

A 4-manifold with b+ > 1 and a nonvanishing Seiberg–Witten invariant cannot admit a metric of positive scalar curvature. This remarkable fact is proved [18] using the Weitzenböck–Lichnerowicz formula for the square of the Spin Dirac operator, combined with the ‘curvature’ part of the Seiberg–Witten equations. Thus, in dimension 4, there is a strong generalization of Lichnerowicz’s vanishing the...

متن کامل

A Weighted L-Estimate of the Witten Spinor in Asymptotically Schwarzschild Manifolds

We derive a weighted L-estimate of the Witten spinor in a complete Riemannian spin manifold (Mn, g) of non-negative scalar curvature which is asymptotically Schwarzschild. The interior geometry of M enters this estimate only via the lowest eigenvalue of the square of the Dirac operator on a conformal compactification of M .

متن کامل

Hyperbolic Manifolds, Harmonic Forms, and Seiberg-Witten Invariants

New estimates are derived concerning the behavior of self-dual hamonic 2-forms on a compact Riemannian 4-manifold with non-trivial Seiberg-Witten invariants. Applications include a vanishing theorem for certain Seiberg-Witten invariants on compact 4-manifolds of constant negative sectional curvature.

متن کامل

Curvature Estimates in Asymptotically Flat Manifolds of Positive Scalar Curvature

Suppose that (Mn, g) is an asymptotically flat Riemannian spin manifold of positive scalar curvature. The positive mass theorem [1, 2, 3] states that the total mass of the manifold is always positive, and is zero if and only if the manifold is flat. This result suggests that there should be an inequality which bounds the Riemann tensor in terms of the total mass and implies that curvature must ...

متن کامل

On an integral formula on hypersurfaces in General Relativity

We derive a general integral formula on an embedded hypersurface for general relativistic space-times. Suppose the hypersurface is foliated by two-dimensional compact “sections” Ss. Then the formula relates the rate of change of the divergence of outgoing light rays integrated over Ss under change of section to geometric (convexity and curvature) properties of Ss and the energy-momentum content...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007